Resembling an interstellar Frisbee, the dark feature in these two Hubble images is a protoplanetary disk of dust seen edge-on around a newborn star in M42. The two images show the disk through two different sets of filters: one to probe the disk’s chemical composition (left) and another to reduce the brightness of the nebula, revealing brighter regions above and below the disk that betray the presence of the star (right). Because the disk is edge-on, its star is largely hidden, but the disk may be an embryonic planetary system in the making. Our solar system probably formed out of such a disk 4.5 billion years ago.

CREDIT
Mark McCaughrean (Max-Planck-Institute for Astronomy), C. Robert O'Dell (Rice University) and NASA
Resembling an interstellar Frisbee, the dark feature in these two Hubble images is a protoplanetary disk of dust seen edge-on around a newborn star in M42. The two images show the disk through two different sets of filters: one to probe the disk’s chemical composition (left) and another to reduce the brightness of the nebula, revealing brighter regions above and below the disk that betray the presence of the star (right). Because the disk is edge-on, its star is largely hidden, but the disk may be an embryonic planetary system in the making. Our solar system probably formed out of such a disk 4.5 billion years ago. CREDIT Mark McCaughrean (Max-Planck-Institute for Astronomy), C. Robert O'Dell (Rice University) and NASA
Appearing like glistening precious stones, M42’s Trapezium cluster, named for the trapezoidal arrangement of its central massive stars, is seen in this infrared Hubble image. All of the members of the Trapezium were born together in this hotbed of star formation.

CREDIT
K.L. Luhman (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.); and G. Schneider, E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson (Steward Observatory, University of Arizona, Tucson, Ariz.) and NASA/ESA
Appearing like glistening precious stones, M42’s Trapezium cluster, named for the trapezoidal arrangement of its central massive stars, is seen in this infrared Hubble image. All of the members of the Trapezium were born together in this hotbed of star formation. CREDIT K.L. Luhman (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.); and G. Schneider, E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson (Steward Observatory, University of Arizona, Tucson, Ariz.) and NASA/ESA
This stunning Hubble image offers the sharpest view of the Orion Nebula ever obtained. Created using 520 different Hubble exposures taken in multiple wavelengths of light, this mosaic contains over one billion pixels. Hubble imaged most of the nebula, but ground-based images were used to fill in the gaps in its observations. The orange color in the image can be attributed to hydrogen, green represents oxygen, and the red represents both sulfur and observations made in infrared light.

Credit
NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team
This stunning Hubble image offers the sharpest view of the Orion Nebula ever obtained. Created using 520 different Hubble exposures taken in multiple wavelengths of light, this mosaic contains over one billion pixels. Hubble imaged most of the nebula, but ground-based images were used to fill in the gaps in its observations. The orange color in the image can be attributed to hydrogen, green represents oxygen, and the red represents both sulfur and observations made in infrared light. Credit NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team